Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigate changes in the vertical structure of the ocean temperature annual cycle amplitude (TEMPAC) down to a depth of 300 m, providing important insights into the relative contributions of anthropogenic and natural influences. Using observations and phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations, we perform a detection and attribution analysis by applying a standard pattern-based “fingerprint” method to zonal-mean TEMPACanomalies for three major ocean basins. In all model historical simulations and observational datasets, TEMPACincreases significantly in the surface layer, except in the Southern Ocean, and weakens within the subsurface ocean. There is a decrease in TEMPACbelow the annual-mean mixed layer depth, mainly due to a deep-reaching winter warming signal. The temporal evolution of signal-to-noise (S/N) ratios in observations indicates an identifiable anthropogenic fingerprint in both surface and interior ocean annual temperature cycles. These findings are consistent across three different observational datasets, with variations in fingerprint detection time likely related to differences in dataset coverage, interpolation method, and accuracy. Analysis of CMIP6 single-forcing simulations reveals the dominant influence of greenhouse gases and anthropogenic aerosols on TEMPACchanges. Our identification of an anthropogenic TEMPACfingerprint is robust to the selection of different analysis periods. S/N ratios derived with model data only are consistently larger than ratios calculated with observational signals, primarily due to model versus observed TEMPACdifferences in the Atlantic. Human influence on the seasonality of surface and subsurface ocean temperature may have profound consequences for fisheries, marine ecosystems, and ocean chemistry. Significance StatementThe seasonal cycle is a fundamental aspect of our climate, and gaining insight into how anthropogenic forcing has impacted seasonality is of scientific, economic, and societal importance. Using observations and CMIP6 model simulations, this research applies a pattern-based detection and attribution method to ocean temperature annual cycle amplitude (TEMPAC) down to 300 m across three major ocean basins. Key findings reveal significant increases in surface layer TEMPACexcept in the Southern Ocean and a weakening of TEMPACwithin the subsurface ocean. Importantly, the analysis confirms human influence on TEMPAC. These findings underscore the profound influence of human-caused climate change on the world’s oceans and have important implications for marine ecosystems, fisheries, and ocean chemistry.more » « lessFree, publicly-accessible full text available April 1, 2026
-
We provide the first scientific evidence that a human-caused signal in the seasonal cycle of sea surface temperature (SST) has emerged from the background noise of natural variability. Geographical patterns of changes in SST seasonal cycle amplitude (SSTAC) reveal two distinctive features: an increase at mid-latitudes in the Northern Hemisphere related to mixed-layer depth changes, and a robust dipole pattern between 40˚S and 55˚S in the Southern Hemisphere which is mainly driven by surface wind changes. The model-predicted pattern of SSTAC change is identifiable with high statistical confidence in four observed SST products and in 51 individual model realizations of historical climate evolution. Simulations with individual forcing reveal that greenhouse gas increases drive most of the change in SSTAC, with smaller but distinct contributions from anthropogenic aerosol and ozone forcing. The robust human influence identified here on the seasonality of SST is likely to have wide-ranging impacts on marine ecosystems.more » « less
-
Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950–1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans’ water masses.more » « less
-
Abstract Separating the climate response to external forcing from internal climate variability is a key challenge. While most previous studies have focused on surface responses, here we examine zonal‐mean patterns of North Pacific subsurface temperature responses. In particular, the changes since 1950 driven by anthropogenic aerosol emissions are found by using a pattern recognition method. Based on the single‐forcing large‐ensemble simulations from two models, we show that aerosol forcing caused a nonmonotonic temporal response and a characteristic zonal‐mean pattern within North Pacific, which is distinct from the pattern associated with internal variability. The aerosol‐forced pattern with the nonmonotonic temporal feature shows a substantial temperature change in subpolar regions and a reversed change on the southern flank of the subtropical gyre. A similar characteristic pattern and nonmonotonic time evolution are extracted from the subsurface observations, which likely reflect the subsurface responses to the aerosol forcing, although differences exist with the simulated responses.more » « less
-
Abstract Unlike greenhouse gases (GHGs), anthropogenic aerosol (AA) concentrations have increased and then decreased over the past century or so, with the timing of the peak concentration varying in different regions. To date, it has been challenging to separate the climate impact of AAs from that due to GHGs and background internal variability. We use a pattern recognition method, taking advantage of spatiotemporal covariance information, to isolate the forced patterns for the surface ocean and associated atmospheric variables from the all-but-one forcing Community Earth System Model ensembles. We find that the aerosol-forced responses are dominated by two leading modes, with one associated with the historical increase and future decrease of global mean aerosol concentrations (dominated by the Northern Hemisphere sources) and the other due to the transition of the primary sources of AA from the west to the east and also from Northern Hemisphere extratropical regions to tropical regions. In particular, the aerosol transition effect, to some extent compensating the global mean effect, exhibits a zonal asymmetry in the surface temperature and salinity responses. We also show that this transition effect dominates the total AA effect during recent decades, e.g., 1967–2007.more » « less
-
null (Ed.)Abstract. Human-induced atmospheric composition changes cause a radiative imbalance atthe top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain ofthe Earth system – and particularly how much and where the heat isdistributed – is fundamental to understanding how this affects warmingocean, atmosphere and land; rising surface temperature; sea level; and lossof grounded and floating ice, which are fundamental concerns for society.This study is a Global Climate Observing System (GCOS) concertedinternational effort to update the Earth heat inventory and presents anupdated assessment of ocean warming estimates as well as new and updated estimatesof heat gain in the atmosphere, cryosphere and land over the period1960–2018. The study obtains a consistent long-term Earth system heat gainover the period 1971–2018, with a total heat gain of 358±37 ZJ,which is equivalent to a global heating rate of 0.47±0.1 W m−2.Over the period 1971–2018 (2010–2018), the majority of heat gain is reportedfor the global ocean with 89 % (90 %), with 52 % for both periods inthe upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 %(5 %) over these periods, 4 % (3 %) is available for the melting ofgrounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Ourresults also show that EEI is not only continuing, but also increasing: the EEIamounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization ofclimate, the goal of the universally agreed United Nations Framework Convention on ClimateChange (UNFCCC) in 1992 and the ParisAgreement in 2015, requires that EEI be reduced to approximately zero toachieve Earth's system quasi-equilibrium. The amount of CO2 in theatmosphere would need to be reduced from 410 to 353 ppm to increase heatradiation to space by 0.87 W m−2, bringing Earth back towards energybalance. This simple number, EEI, is the most fundamental metric that thescientific community and public must be aware of as the measure of how wellthe world is doing in the task of bringing climate change under control, andwe call for an implementation of the EEI into the global stocktake based onbest available science. Continued quantification and reduced uncertaintiesin the Earth heat inventory can be best achieved through the maintenance ofthe current global climate observing system, its extension into areas ofgaps in the sampling, and the establishment of an international framework forconcerted multidisciplinary research of the Earth heat inventory aspresented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOIhttps://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2(von Schuckmann et al., 2020).more » « less
-
An official website of the United States government
